AMRUTVAHINI COLLEGE OF ENGINEERING, SANGAMNER DEPARTMENT OF MECHANICAL ENGINEERING M.E. DESIGN ENGINEERING (2013 Pattern) Course Outcomes

Course Code	Course Name	Course Outcomes-on the completion of this course student will be able to	
SEMEST	FER - I		
507201	Advanced Mathematics	CO1	Develop knowledge of numerical methods applicable for mechanical engineering.
		CO2	Formulate and obtain the numerical solution of mechanical engineering problems.
		CO3	Able to compare different numerical schemes.
		CO4	Understand the algorithms of mechanical engineering
502202	Material Science and Mechanical Behaviour of	CO1	related software packages. Summarize ductile and brittle type fractures using different theories.
		CO2	Integrate design considerations in mechanical behaviour of advanced materials.
	Materials	CO3	Review strengthening mechanisms of materials and selection of materials
502203	Advanced Stress	CO1	Solve the problems related to the theory of elasticity.
	Analysis	CO2	Analyse two dimensional problems in rectangular as well as polar co-ordinates.
		CO3	Find shear centre for various cross section.
		CO4	Determine membrane stresses in shell and storage vessel.
		CO5	Interrupt torsion of bars with various cross sections.
		CO6	Solve problem based on contact stresses.
502104	Research Methodology	CO1	Conduct literature survey by using various research considerations.
		CO2	Formulate the problem statement using research considerations.
		CO3	Demonstrate knowledge and understanding of data analysis in relation to the research process.
		CO4	Interpret the analysis performed in relation to the research process.
502205	Elective I		
	Energy Audit	CO1	Compare energy scenario of India and World.
	& Management	CO2	Carry out Energy Audit of the Residence / Institute/ Organization.
		CO3	Identify and evaluate energy conservation opportunities in Thermal Utilities.
		CO4	Identify and evaluate energy conservation opportunities in Electrical Utilities.
	Project	CO1	Understand the importance of projects and its phases.
	Management	CO2	Analyse projects from marketing, operational and financial perspectives.
		CO3	Evaluate projects based on discount and non-discount methods.

		CO4	Develop network diagrams for planning and
		004	execution of a given project.
		CO5	Apply crashing procedures for time and cost
		005	optimization
	Intellectual	CO1	Appreciate the significance of Intellectual Property as
	Property		a very important driver of growth and development.
	Rights	CO2	Statutorily acquire and use different types of
	0		intellectual property in their professional life.
SEMEST	TER-II		
502207	Analysis and	CO1	Synthesize and analyse four bar mechanisms.
	Synthesis of	~~~	
	Mechanisms	CO2	Use computers for mechanism animation and
		~~~	analysis.
		CO3	Apply kinematic theories to real-world problems of
		~ ~ .	mechanism design and synthesis.
502208	Advanced	C01	Knowledge of fundamentals of Vibrations
	Mechanical	CO2	Considerably more in-depth knowledge of the major
	Vibrations		subject and ability to solve problems on Two degree
		~ ~ ~	freedom system, Multi degree freedom system
		CO3	Knowledge of Experimental Methods in Vibration
	_	~ ~ .	Analysis.
		CO4	Understand and apply the methodology for dynamic
			Analysis.
		CO5	Understand Non-Linear Vibrations and Random
<b>5033</b> 00		<b>CO1</b>	Vibrations.
502209	Finite	CO1	Identify the concepts of idealization, discretisation
	Element	<i></i>	and able to define the boundary conditions.
	Method	CO2	Formulate element and global stiffness matrices.
	-	CO3	Evaluate results of finite element analysis.
		CO4	Identify sources of computational and physical errors
	-	005	of finite element analysis and its scope applicability.
		CO5	Implement the methodology of finite element analysis
		000	and Interpret numerical results.
500010		CO6	Use commercial finite element analysis software.
502210	Elective II Acoustics &	CO1	Knowledge of design for noise on tother that
		<u>CO1</u>	Knowledge of design for noise and vibration.
	Noise Control	CO2	Knowledge of signal process.
	– I&II	CO3	Understanding hydrostatic and hydrodynamic
		CO.4	lubrication.
	<b>D</b>	<u>CO4</u>	Understanding of NVH control strategies.
	Process	CO1	Understand the basic concepts in process design,
	Equipment		block diagrams for flow of processes, material flow
	Design	CO1	balance, design pressures and temperatures
	F	CO2	Able to do cost and profitability estimation
		CO3	Able to use optimization technique such as
	-	CO.4	Lagrange's multiplier and golden section method.
		CO4	Able to implement different design codes like IS-
			2825, ASME-SECT, EIGHT-DIV-II TEMA.API-650,
			BS-1500 & 1515 in various PED.

SEMEST	SEMESTER-III						
602213	Optimization	CO1	Develop the ability to obtain the optimal solution for				
	Techniques	000	engineering problems.				
		CO2	Model engineering problems and pose it as an				
	-	000	optimisation problem.				
		CO3	Apply the optimisation methods to design a				
602214		001	mechanical system.				
602214	Mechanical	CO1	Classify various types of static characteristics and				
	Measurements	000	types of errors occurring in the system.				
	and Controls	CO2	Classify and select proper measuring instrument for				
	-	000	linear and angular displacement.				
		CO3	Classify and select proper measuring instrument for				
	-	<b>GO</b> 4	pressure and temperature measurement.				
		CO4	Design mathematical model of system/process for				
	-		standard input responses.				
		CO5	Analyse error and differentiate various types of				
	-	<u> </u>	control systems and time domain specifications.				
		CO6	Analyse the problems associated with stability.				
602215	Elective III	~ ~ .					
	Industrial	CO1	Understand the role of Tribology in mechanical				
	Tribology-I &	<b>G Q Q</b>	system design.				
	II	CO2	Understanding of friction and wear phenomenon.				
		CO3	Apply the concepts of tribology for design and				
	-	<b>GO</b> 4	operations of bearings and lubrication requirements.				
		CO4	Insights into performance of Hydrostatic (externally-				
	-		pressurized) & Elasto-Hydrodynamic Lubrication				
		CO5	Knowledge of Rheodynamic (static) Lubrication				
	Product Life	CO1	Understanding of product structure and architecture of				
	Cycle		the product families and similar products.				
		CO2	Integrate lifecycle management strategies and				
			knowledge to develop new and/or formulate				
			appropriate engineering design solutions in				
			engineering environment.				
		CO3	Acquired engineering knowledge related to each				
			phase of the life cycle through which the product				
			passes with the usage of integrated software for				
			monitoring and management.				
		CO4	Incorporate preventive approaches concentrating on				
			minimizing waste, hazard and risk associated with				
			product design, development and manufacturing.				